
Working out Backpropogation

Neural Network Structure

In this meeting, we went over the math behind neural networks: feed-forwarding,
derivatives, and backpropagation. This document contains what we thought you
need to know for implementing back-propagation.

Say that we have a feed-forward neural network consisting of L layers, where layer L
is the output layer, and layer 0 is the input layer. Let ą(¸) represent the activations
in the ¸-th layer of the network. So if the input to our network is the vector x̨, then
ą(0) = x̨. For the purposes of this writeup, vectors are 1-indexed, as opposed to in
code where they are 0-indexed.

Say that layer ¸ has n¸ neurons.

Let w(¸)
ij represent the weight on the edge from the j-th node in layer ¸ ≠ 1 to the i-th

node in layer ¸. Let W (¸) be the matrix defined by

W (¸) =

S

WWWWWWU

w(¸)
11 w(¸)

12 · · · w(¸)
1n¸≠1

w(¸)
21 w(¸)

22 · · · w(¸)
2n¸≠1

...
...

. . .
...

w(¸)
n¸1 w(¸)

n¸2 · · · w(¸)
n¸n¸≠1

T

XXXXXXV

Viewed as a linear transformation, this is W (¸) : Rn¸≠1 æ Rn¸ , and so its dimension
is n¸ ◊ n¸≠1.

Let b(¸)
i be the bias associated with the i-th node of layer ¸. Each layer of the network

has a “squishification function” written as ‡(¸), so computing the activation a(¸)
i can

be written as
a(¸)

i = ‡(¸)
1
z(¸)

i

2

where we let
z(¸)

i = b(¸)
i +

n¸≠1ÿ

j=1
wij a(¸≠1)

j

We can also write this more succinctly as

ą(¸) = ‡
1
z̨(¸)

2

where
z̨(¸) = W (¸)ą(¸≠1) + b̨(¸)

and where ‡(x̨) is applied to each element of x.

2



Cost Gradients

For now, we’ll be using squared loss. If for training sample 1 we desire the output
layer to have value y̨,

C1 = Îą(¸) ≠ y̨Î2
2 =

nÿ̧

i=1
(a(¸)

i ≠ yi)2

The overall cost for the network over all N training samples will be the average of all
costs, so

C = 1
N

Nÿ

k=1
Ck

We wish to compute the gradient, ÒC, of the loss function, so that we can take a step
in the “downwards” direction along the surface formed by the graph of C in order to
find a minimum of C. Since we only care about the direction the gradient is pointing
and not the magnitude, the factor of 1

N in front can be ignored.1 So, we care about
computing

ÒC ¥ ÒC0 + ÒC1 + · · · + ÒCN

For explanation purposes, we’ll go through computing ÒC0 for a label y̨, with input
x̨ = ą(0). The gradient is

ÒC0 =

S

WWWWWWWWWWWWWWWWWWU

ˆC0/ˆw
(1)
00

...
ˆC0/ˆw

(1)
ij

...
ˆC0/ˆw

(1)
n1n0

...
ˆC0/ˆb

(1)
i

...

T

XXXXXXXXXXXXXXXXXXV

Where the dimension of this vector is the number of total parameters (weights and
biases) of our network. It’s components each reflect how sensitive the overall cost is
to a small change in one of the parameters, so we want to take a step in the most
e�cient direction to decrease the cost.

1. From here on out, for two vectors v̨ and ų, v̨ ¥ ų will mean that the two vectors are pointing
in the same direction, but may not have the same magnitude. More formally,

v̨ ¥ ų ≈∆ v̨
Îv̨Î = ų

ÎųÎ

3



Computing Partial Derivatives

Using the chain rule, we can compute the derivative with respect to one of the weights
in layer ¸.

ˆC0

ˆw(¸)
ij

= ˆz(¸)
i

ˆw(¸)
ij

· ˆa(¸)
i

ˆz(¸)
i

· ˆC0

ˆa(¸)
i

In the same manor we can compute the derivative with respect to one of the biases.

ˆC0

ˆb(¸)
i

= ˆz(¸)
i

ˆb(¸)
i

· ˆa(¸)
i

ˆz(¸)
i

· ˆC0

ˆa(¸)
i

We can actually simplify these computations quite a lot. Using the formula for z(¸)
i ,

we know

z(¸)
i = b(¸)

i +
Q

a
n¸≠1ÿ

j=1
w(¸)

ij a(¸≠1)
j

R

b =∆ ˆz(¸)
i

ˆw(¸)
ij

= a(¸≠1)
j

When taking the derivative with respect to bias, this becomes much simpler.

z(¸)
i = b(¸)

i +
Q

a
n¸≠1ÿ

j=1
w(¸)

ij a(¸≠1)
j

R

b =∆ ˆz(¸)
i

ˆb(¸)
i

= 1

Also, because a(¸)
i = ‡(¸)(z(¸)

i ), ˆa
(¸)
i

ˆz
(¸)
i

= ‡̇(¸)(z(¸)
i ) where ‡̇ is the derivative of ‡. To-

gether, this means
ˆC0

ˆw(¸)
ij

= a(¸≠1)
j ‡̇(¸)(z(¸)

i ) · ˆC0

ˆa(¸)
i

ˆC0

ˆb(¸)
i

= ‡̇(¸)(z(¸)
i ) · ˆC0

ˆa(¸)
i

Let’s use matrix notation to clean this up a bit. Let ˆC0
ˆW (¸) represent the matrix whose

(i, j)-th entry is ˆC0
ˆw

(¸)
ij

. Likewise, ˆC0

ˆb̨(¸) is the vector whose i-th entry is ˆC0
ˆb

(¸)
i

. Now, we
can write

ˆC0

ˆb̨(¸)
= ‡̇(¸)(̨z(¸)) § ˆC0

ˆą(¸) and ˆC0
ˆW (¸) = ˆC0

ˆb̨(¸)

1
ą(¸≠1)

2€

Where § represents the point-wise Hadamard product.

This leaves the question of how to compute the derivative of C0 with respect to ai

for each layer. Notice that if ¸ = L (we are in the last layer) this is actually quite
straightforward. Using the definition of cost,

C0 =
nLÿ

i=1
(a(L)

i ≠ yi)2

4



we can easily compute the derivative

ˆC0

ˆa(L)
i

= 2(a(L)
i ≠ yi) or ˆC0

ˆą(L) = 2(̨a(L) ≠ y̨)

However, if we try to find an expression for the same derivative but in a previous
layer, we find

ˆC0

ˆa(¸≠1)
k

=
nÿ̧

j=1

ˆz(¸)
j

ˆa(¸≠1)
i

·
ˆa(¸)

j

ˆz(¸)
j

· ˆC0

ˆa(¸)
j

=
nÿ̧

j=1
w(¸)

jk ‡̇(¸)(z(¸)
j ) · ˆC0

ˆa(¸)
j

In matrix notation, this is

ˆC0
ˆą(¸≠1) = W (¸)€

A

‡̇(¸)
1
z̨(¸)

2
§ ˆC0

ˆą(¸)

B

Notice this formula is recursive! To compute it e�ciently, we can use a dynamic
programming style of approach. This gives us the following natural algorithm for
computing ÒC0.

The Backpropogation Algorithm

(Base case of the DP table.) Start by computing all ˆC0/ˆa
(L)
i = 2(a(L)

i ≠ yi) for
1 Æ i Æ nL. With this done, we can also calculate all

ˆC0

ˆw(L)
ij

= a(L≠1)
i ‡̇(¸)(z(L)

i ) ˆC0

ˆa(L)
i

and ˆC0

ˆb(L)
i

= ‡̇(¸)(z(¸)
i ) ˆC0

ˆa(L)
i

for the last layer L. In matrix form, this means computing

ˆC0
ˆą(L) = 2

1
ą(L) ≠ y̨

2

ˆC0

ˆb̨(L)
= ‡̇(L)(̨z(L)) § ˆC0

ˆą(L)

ˆC0
ˆW (L) = ˆC0

ˆb̨(L)

1
ą(L≠1)

2€

(Recursive case of DP table) Now, iterating ¸ from L ≠ 1 down to 1, compute for all
1 Æ i Æ n¸ the derivatives

ˆC0

ˆa(¸)
i

=
n(¸+1)ÿ

j=1
w(¸)

ij ‡̇(¸+1)(z(¸+1)
j ) ˆC0

ˆa(¸+1)
j

5



Again, in matrix form, this is computing

ˆC0
ˆą(¸) = W (¸)

A

‡̇(¸+1)
3

z̨(¸)
4

§ ˆC0
ˆą(¸+1)

B

Once these have been computed, one can directly compute

ˆC0

ˆw(¸)
ij

= a(¸≠1)
j ‡̇(¸)(z(¸)

i ) ˆC0

ˆa(¸)
i

and ˆC0

ˆb(¸)
i

= ‡̇(¸)(z(¸)
i ) ˆC0

ˆa(¸)
i

which is

ˆC0

ˆb̨(¸)
= ‡̇(¸)(̨z(¸)) § ˆC0

ˆą(¸)

ˆC0
ˆW (¸) = ˆC0

ˆb̨(¸)

1
ą(¸≠1)

2€

And that’s it! This gives everything you need to fully compute ÒC0.

Stochastic Gradient Descent

Fully computing ÒC ¥ ÒC0, . . . , ÒCN is very costly, as that’s a lot of gradients to
compute. So instead of recomputing ÒC and taking a step in the ≠ÒC direction
every time, we first start by randomly partitioning our training set into B “batches.”
We’ll say that Ck,b is the cost of the network on the b-th sample of the k-th batch
of our training set, and ÒCb ¥ ÒC1,b + · · · + ÒCN/B,b for 1 Æ b Æ B. At each step
of gradient descent, we iterate over 1 Æ b Æ B, taking a step in the ≠ÒCb direction.
We repeat this iteration until some other stopping condition.

6


	Neural Network Structure
	Cost Gradients
	Computing Partial Derivatives

	Learning Rates

