Working out Backpropogation

Neural Network Structure

In this meeting, we went over the math behind neural networks: feed-forwarding,
derivatives, and backpropagation. This document contains what we thought you
need to know for implementing back-propagation.

Say that we have a feed-forward neural network consisting of L layers, where layer L
is the output layer, and layer 0 is the input layer. Let al) represent the activations
in the /-th layer of the network. So if the input to our network is the vector X, then

a® = X. For the purposes of this writeup, vectors are 1-indexed, as opposed to in
code where they are O-indexed.

Say that layer ¢ has n, neurons.

Let wg) represent the weight on the edge from the j-th node in layer £ — 1 to the i-th
node in layer £. Let W® be the matrix defined by
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Viewed as a linear transformation, this is W : R™-1 — R™, and so its dimension
ISy X ny_q.

Let bl(-g) be the bias associated with the i-th node of layer ¢. Each layer of the network
O

has a “squishification function” written as 0¥, so computing the activation a;’ can

be written as
al(-z) =g (zy))

where we let
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We can also write this more succinctly as
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and where o(X) is applied to each element of x.



Cost Gradients

For now, we’ll be using squared loss. If for training sample 1 we desire the output
layer to have value y,
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The overall cost for the network over all NV training samples will be the average of all
costs, so
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We wish to compute the gradient, V', of the loss function, so that we can take a step
in the “downwards” direction along the surface formed by the graph of C' in order to
find a minimum of C'. Since we only care about the direction the gradient is pointing
and not the magnitude, the factor of % in front can be ignored.’ So, we care about
computing
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For explanation purposes, we’ll go through computing VCj for a label y, with input
%X = a®. The gradient is
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Where the dimension of this vector is the number of total parameters (weights and
biases) of our network. It’s components each reflect how sensitive the overall cost is
to a small change in one of the parameters, so we want to take a step in the most
efficient direction to decrease the cost.

1. From here on out, for two vectors v and 1, v &~ u will mean that the two vectors are pointing
in the same direction, but may not have the same magnitude. More formally,
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Computing Partial Derivatives

Using the chain rule, we can compute the derivative with respect to one of the weights
in layer /.
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In the same manor we can compute the derivative with respect to one of the biases.

9C, 921" aal” ac,
a0 D 9.9 940

We can actually simplify these computations quite a lot. Using the formula for zi(ﬁ),
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When taking the derivative with respect to bias, this becomes much simpler.
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Also, because a” = O'(Z)(Zi(e)), 50 = d(f)(zy)) where ¢ is the derivative of . To-

gether, this means
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Let’s use matrix notation to clean this up a bit. Let ﬁvc(% represent the matrix whose

(i, 7)-th entry is 800 . Likewise, af’E@ is the vector whose i-th entry is ‘%;0 Now, we
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Where ©® represents the point-wise Hadamard product.

This leaves the question of how to compute the derivative of Cy with respect to a;
for each layer. Notice that if £ = L (we are in the last layer) this is actually quite
straightforward. Using the definition of cost,
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we can easily compute the derivative
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However, if we try to find an expression for the same derivative but in a previous
layer, we find
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In matrix notation, this is
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Notice this formula is recursive! To compute it efficiently, we can use a dynamic
programming style of approach. This gives us the following natural algorithm for
computing VCj.

The Backpropogation Algorithm

(Base case of the DP table.) Start by computing all 9C/sa{") = 2(a§L) —y;) for
1 <1 < ny. With this done, we can also calculate all
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for the last layer L. In matrix form, this means computing
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(Recursive case of DP table) Now, iterating ¢ from L — 1 down to 1, compute for all
1 <4 < ny the derivatives
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Again, in matrix form, this is computing
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Once these have been computed, one can directly compute
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And that’s it! This gives everything you need to fully compute V.
Stochastic Gradient Descent

Fully computing VC' = VC,...,VCly is very costly, as that’s a lot of gradients to
compute. So instead of recomputing VC' and taking a step in the —V ' direction
every time, we first start by randomly partitioning our training set into B “batches.”
We'll say that Cf is the cost of the network on the b-th sample of the k-th batch
of our training set, and VCj, =~ VO + -+ + VCy/py for 1 < b < B. At each step
of gradient descent, we iterate over 1 < b < B, taking a step in the —V ), direction.
We repeat this iteration until some other stopping condition.
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