Working out Backpropogation

Neural Network Structure

In this meeting, we went over the math behind neural networks: feed-forwarding,
derivatives, and backpropagation. This document contains what we thought you
need to know for implementing back-propagation.

Say that we have a feed-forward neural network consisting of L layers, where layer L
is the output layer, and layer 0 is the input layer. Let al) represent the activations
in the /-th layer of the network. So if the input to our network is the vector X, then

a® = X. For the purposes of this writeup, vectors are 1-indexed, as opposed to in
code where they are O-indexed.

Say that layer ¢ has n, neurons.

Let wg) represent the weight on the edge from the j-th node in layer £ — 1 to the i-th
node in layer £. Let W® be the matrix defined by

(0 (0) (0)

Wt i
SR B Ay

-z -E . .

wv(u)l wfzg)z wq(zi)nz_l

Viewed as a linear transformation, this is W : R™-1 — R™, and so its dimension
ISy X ny_q.

Let bl(-g) be the bias associated with the i-th node of layer ¢. Each layer of the network
O

has a “squishification function” written as 0¥, so computing the activation a;’ can

be written as
al(-z) =g (zy))

where we let

1)

ng_1
A0 ="+ > wi a§
j=1

We can also write this more succinctly as

where
7O — WOz 4 b®

and where o(X) is applied to each element of x.

Cost Gradients

For now, we’ll be using squared loss. If for training sample 1 we desire the output
layer to have value y,

e

1, o ?
Cr = la® — g2 =3 (a!” — y,)?

i=1

The overall cost for the network over all NV training samples will be the average of all
costs, so

1N
C=— C
Nk; b

We wish to compute the gradient, V', of the loss function, so that we can take a step
in the “downwards” direction along the surface formed by the graph of C' in order to
find a minimum of C'. Since we only care about the direction the gradient is pointing
and not the magnitude, the factor of % in front can be ignored.’ So, we care about
computing

VC%VCQ—FVCH—F—'—VCN

For explanation purposes, we’ll go through computing VCj for a label y, with input
%X = a®. The gradient is
[0Cu/ouly

9Co/ g
aCo /a'wu)

ning

9Co /gp (M)

Where the dimension of this vector is the number of total parameters (weights and
biases) of our network. It’s components each reflect how sensitive the overall cost is
to a small change in one of the parameters, so we want to take a step in the most
efficient direction to decrease the cost.

1. From here on out, for two vectors v and 1, v &~ u will mean that the two vectors are pointing
in the same direction, but may not have the same magnitude. More formally,

I v d
VAU &< _— = T
[N2(il

Computing Partial Derivatives

Using the chain rule, we can compute the derivative with respect to one of the weights
in layer /.
aC, 92” aal” ac,
ow? ow? . 9219 . dal”
ij ij 7 i
In the same manor we can compute the derivative with respect to one of the biases.

9C, 921" aal” ac,
a0 D 9.9 940

We can actually simplify these computations quite a lot. Using the formula for zi(ﬁ),

we knOW
(0 (0) nfi:l () (1) 6 z(Z) (e=1)
j— (911) ;
Jj=1 i

When taking the derivative with respect to bias, this becomes much simpler.

829
i 2 : l

ob,

Also, because a” = O'(Z)(Zi(e)), 50 = d(f)(zy)) where ¢ is the derivative of . To-

gether, this means

oC _ oC
(2) - ;é 1)0(@(2@@)) (2)
Ow; da;
800 - (0) ((g)) 800
ab,” " 04l
Let’s use matrix notation to clean this up a bit. Let ﬁvc(% represent the matrix whose

(i, 7)-th entry is 800 . Likewise, af’E@ is the vector whose i-th entry is ‘%;0 Now, we
0 7.] ob ’L
can write
0Cy oC oC, oC T
220 _ 50720y o 20 0 _ 0 (z-1)
PNCR (Z7) 0 oz and o PG (a)

Where ©® represents the point-wise Hadamard product.

This leaves the question of how to compute the derivative of Cy with respect to a;
for each layer. Notice that if £ = L (we are in the last layer) this is actually quite
straightforward. Using the definition of cost,

nr

Co = Z(az('L) - ?Ji)2

i=1

4

we can easily compute the derivative

0C)

Bl Y, V€) R
=2(a y;) or 220

— 2@ - 3)

However, if we try to find an expression for the same derivative but in a previous
layer, we find

n € (&) n
aan‘” =1 8a§€_1) 8z](-£) 8a§»€) =1 ! ! 8@5-@

In matrix notation, this is

0Co _ 107 (50 (70) o 90
ey ~ W o (2)@agw)

Notice this formula is recursive! To compute it efficiently, we can use a dynamic
programming style of approach. This gives us the following natural algorithm for
computing VCj.

The Backpropogation Algorithm

(Base case of the DP table.) Start by computing all 9C/sa{") = 2(a§L) —y;) for
1 <1 < ny. With this done, we can also calculate all

9Co oF D0 () dCy 0d 0Cy) ,(0) 2[&)

a =0 (%7
ow, dai" by dai"

for the last layer L. In matrix form, this means computing

9Co iy
PRO) _2<a —y)
0C _ sz o 9%
oo) g
800 _ 800 (é’(Lfl))T
oW gh(L)

(Recursive case of DP table) Now, iterating ¢ from L — 1 down to 1, compute for all
1 <4 < ny the derivatives

0Cy
8@5“ b

9Co ") ey ()
PHO) =D w ot)(Zj)
a; j=1

Again, in matrix form, this is computing

9C W (O-_(Z—H) (Z(—Z)> o 9C,)

oal) oale+1)

Once these have been computed, one can directly compute

aCo (@—1) . (f) (g) 800 800 . (Z) (g) (900
(‘311)5) ! (=) 8a££) 81)@(-6) (=) 8a§£>
which is
800 800

— 50 =0
gm0 %)0 gam

800 - 800 S(0-1) T
OW® — Hp®) (a)

And that’s it! This gives everything you need to fully compute V.
Stochastic Gradient Descent

Fully computing VC' = VC,...,VCly is very costly, as that’s a lot of gradients to
compute. So instead of recomputing VC' and taking a step in the —V ' direction
every time, we first start by randomly partitioning our training set into B “batches.”
We'll say that Cf is the cost of the network on the b-th sample of the k-th batch
of our training set, and VCj, =~ VO + -+ + VCy/py for 1 < b < B. At each step
of gradient descent, we iterate over 1 < b < B, taking a step in the —V), direction.
We repeat this iteration until some other stopping condition.

	Neural Network Structure
	Cost Gradients
	Computing Partial Derivatives

	Learning Rates

